圆的面积教学设计方案
为了确保事情或工作有序有力开展,时常需要预先制定一份周密的方案,方案是阐明具体行动的时间,地点,目的,预期效果,预算及方法等的企划案。写方案需要注意哪些格式呢?以下是小编整理的圆的面积教学设计方案,欢迎阅读,希望大家能够喜欢。
圆的面积教学设计方案1一、教学目标
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
二、教学重点
圆面积的计算公式推导和运用。
三、课前准备
一个大圆、剪刀、小正方形。
四、课时安排:1课时
授课人
授课时间
五、教学过程
一、复习引入,导入新课。
教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。
学生说出自己的见解。
教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎
样表示?
学生做出回答。
教师引导交流:圆的周长和直径、半径有关。大家猜想一下,圆的面积与谁有关?
二、探索尝试,解释交流。
教师引导交流:同学们的猜想对不对呢?下面我们就一起来验证一下。
大家可利用昨晚把圆剪开后,拼成的图形展示一下,看看发现了什么?
全班汇报交流:谁想先来展示一下?(学生回答)
教师引导交流:你能让平行四边形的底再直一点吗?
学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。
学生领悟:多分几份,平行四边形的底就会直一些。
教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?
教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的份数越来越多呢?
教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。
教师引导交流:若把其中的一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?
师:这样就把求圆转化成了求长方形。
教师引导交流:你认为转化成的长方形与圆有什么关系?
生:他们的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
教师引导交流:你能根据它们的关系,推出圆的面积公式吗?
长方形的面积=长×宽
圆的面积=c÷2×r=πr×r=πr2
教师引导交流:如果用s表示圆的面积,那么圆的面积公式可以写成:
s=πr2
教师引导交流:黑板上的这个圆半径是10厘米,它的面积是多少。
三、巩固练习
1、请同学们利用公式,求出“神舟五号”飞船预先设定的降落范围是多大。
建议:可以先画模拟图,然后想办法得出比预定范围小了多少平方米。
2、自主练习第1题。
3、自主练习第2题。
给出圆的直径求圆的面积,必须先求出圆的半径,再求圆的面积。
4、自主练习第3题。
总结:通过这节课的学习,你有什么收获?
课后札记:
圆的面积教学设计方案2一、教学目标
知识与技能:
掌握圆的面积计算公式,并能利用公式正确解决简单问题。
过程与方法:
通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。
情感、态度与价值观:
感受数学与生活的联系,激发学习兴趣。
二、教学重难点
教学重点:
圆的面积计算公式。
教学难点:
圆的面积计算公式的推导过程。
三、教学过程
(一)导入新课
创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。
(二)讲解新知
提出问题:之前的图形面积公式是如何推导的?
学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。
追问:能否将圆的图形转换成之前的图形?
组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。
预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;
预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;
预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。
老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。
学生能够发现圆平均分的份数越多,拼成的图形越接近于长方形。
进一步追问:观察原来的圆和转化后的这个近似长方形,发现他们之前有哪些等量关系?
预设1:长方形的面积等于圆的面积;
预设2:长方形的长近似等于圆周长的一半;
预设3:长方形的宽近似等于圆的半径。
圆的面积教学设计方案3一、教学目的:
5、使学生能够正确并灵活的运用公式进行计算。
6、培养学生观察、比较、分析、综合能力并培养学生合作意识。
7、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辩证思维方法。
二、教学重点:
1、学生能够正确并灵活的运用公式进行计算。
2、培养学生观察、比较、分析、综合能力并培养学生合作意识。
三、教学难点:
使学生能够正确并灵活的运用公式进行计算。
四、教学过程:
1、说一说你的计算方法:
r=3,c=_______
s=_______
2、上节课我们研究了圆的面积,如果求圆的面积需要知道什么条件?怎么求?(需要知道r可以直接用公式计算。)
板书:
3、导入:如果知道直径或周长,你能求出圆的面积吗?还有哪些图形的面积需要运用圆的面积的知识来解决的呢?今天我们继续研究有关圆的面积的知识。
板书:圆的面积
(一)研究圆的面积的计算方法:
1、 ……此处隐藏6102个字……联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。
【教学目标】:
1.认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2.过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3.情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。
【教学难点】:理解圆的面积计算公式的推导。
【教学准备】:相应;圆的面积演示教具
【教学过程】
一、情境导入
出示场景——《马儿的困惑》
师:同学们,你们知道马儿吃草的范围是一个什么图形吗?
生:是一个圆形。
师:那么,要想知道马儿吃草范围的大小,就是求圆形的什么呢?
生:圆的面积。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1.渗透“转化”的数学思想和方法。
师:关于圆的面积你想了解什么?
(什么是圆的面积?圆的面积怎样计算呢?计算公式又是什么?计算公式怎样推导?……)
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2.演示揭疑。
师:(边说明边演示)把这个圆平均分成4、8、16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑的演示,生动形象地展示了化曲为直的剪拼过程。]
3.学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决问题
1.同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?
(再次出示牛吃草图)
师:这匹马最多能吃多大面积的草,现在会求了吗?
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.教学例1。
如果我们知道一个圆形草坪的直径是20,每平方米草皮8元,铺满草坪需要多少钱?
要求铺满草坪需要多少钱,要先求什么呢?(先要求出圆形草坪的面积是多少平方米。)
我们该怎样求它的面积呢?请大家动笔算一算这个圆形草坪的面积吧!
师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。
(出示第三题)
3.小刚量得一棵树干的周长是125.6c。这棵树干的横截面的面积是多少?
分析题意后学生独立完成(组织交流,评价反馈)
同学们真棒,解决完上面的三个问题后敢不敢来挑战下面的问题?
4.已知半圆中三角形ABC的高是5厘米,面积是30平方厘米,半圆的直径是多少?求阴影部分面积。
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
四、全课小结、回顾反思
师:你们对于圆面积的疑问现在解开了吗?通过这节课的学习,你有什么收获?
知道哪些条件就可求圆的面积?
(知道半径、直径或是周长)
知道半径:S=πr2
知道直径:S=π(d÷2)2
知道周长:S=π(C÷π÷2)2
师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!
【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】
五、课后延伸
圆除了转化为长方形,还能转化为什么图形呢?
板书设计:
长方形的面积 = 长 × 宽
圆的面积 =圆周长的一半 × 半径
S = πr × r
= πr2
文档为doc格式